TEMA N° 5-I: EXCEL AVANZADO. ÁNGULOS Y FUNCIONES TRIGONOMÉTRICAS EN EXCEL

Objetivo: Conocer y comprender el uso de las funciones trigonométricas que dispone Excel para luego aplicarlas en la solución de problemas del campo de la Ingeniería.

1. Introducción:

Existen varias formas de expresar los valores de los ángulos. Las más comúnmente utilizadas son las expresiones en el sistema sexagesimal que expresan los ángulos en grados sexagesimales, minutos y segundos (Ej.: $\alpha = 48^{\circ} 22' 35''$) y las expresiones en el sistema internacional (SI) para las medidas angulares cuya unidad es el radián (*Ej*.: $\beta = \pi/4$).

Como todas las funciones, se utilizan <u>argumentos</u> (variable independiente o <u>datos</u>) y devuelven <u>resultados</u> <u>o valores</u>. En el caso de las funciones trigonométricas que se van a tratar, se utilizan **argumentos** numéricos y éstas devuelven **valores** numéricos. En Excel las funciones trigonométricas utilizan como argumento **ÁNGULOS. Estos ÁNGULOS necesariamente deben ser expresados** <u>en RADIANES</u>. En el Programa, todas las funciones se encuentran agrupadas en categorías. Esto puede verse cuando se abre el Asistente de Funciones (Ilustración 2) desde el botón f_x en la barra de fórmulas o desde la pestaña Fórmulas el botón de Insertar función (Ilustración 1).

	Tabla 1	
2. Funciones trigonométricas existentes:	NOMBRE Y SINTAXIS DE LA FUNCIÓN	RESULTADO
	ACOS(número)	Arco coseno
En la Tabla 1 se muestran las funciones trigonométricas	ACOSH(número)	Coseno hiperbólico inverso
disponibles. Las trigonométricas básicas que se	ASENO(número)	Arco seno
describen con más detalle en este apunte son las que	ASENOH(número)	Seno hiperbólico inverso
estan resaltadas.	ATAN(número)	Arco tangente
Función SENO(ángulo) : Devuelve el seno de un	ATAN2(coord. x; coord. y)	Arco tangente de las coordenadas x e y
número = "ángulo" que es el valor numérico del ángulo	ATANH(número)	Tangente hiperbólica inversa
expresado en RADIANES.	COS(radianes)	Coseno
Función COS(ángulo): Devuelve coseno de un número	COSH(número)	Coseno hiperbólico
= "ángulo" que es el valor numérico del ángulo	SENO(radianes)	Seno
expresado en RADIANES .	SENOH(número)	Seno hiperbólico
runcion TAIN(angulo) : Devuelve la tangente de un número – " ángulo " que es el valor numérico del ángulo	TAN(radianes)	Tangente
expresado en RADIANES .	TANH(número)	Tangente hiperbólica
······································		
Siempre que se expresan ángulos en la planilla ya sea		
como argumento o como resultado, éstos se expresan en		

RADIANES. Si se desea ver el valor numérico de los ángulos expresados en grados sexagesimales se deben utilizar las relaciones matemáticas entre los dos sistemas o bien utilizar las funciones de conversión que dispone el Programa (estas funciones son: GRADOS y RADIANES) que se describirán brevemente más

adelante.

3. Tres formas de introducir ángulos

- 1. Los grados, minutos y segundos en celdas distintas
- 2. Minutos y segundos como decimal
- 3. gg:mm:ss

A continuación se describirá cómo trabajar con cada una y la forma de introducirlo como argumento de las funciones trigonométricas.

3.1 Grados, minutos y segundos en celdas distintas

Se escribe el valor numérico de cada fracción del ángulo en celdas distintas. Es decir el valor numérico que representa los grados en una celda (la B2 para el ángulo α), los minutos en otra distinta (la celda C2) y los segundos en una tercera celda (la D2) como se muestra en la llustración 3.

Luego para poder expresarlo en una sola celda se deben convertir los minutos y segundos en una fracción decimal de los grados utilizando las relaciones matemáticas entre éstos (1° = 60 minutos = 3600 segundos). En la barra de fórmulas de la llustración 3 se puede ver la fórmula que se utilizó para realizar la conversión mencionada para el ángulo α .

Necesariamente el valor del ángulo debe ser expresado en una sola celda para poder utilizarlo como referencia del argumento (dato de entrada de la función) de cualquiera de las funciones trigonométricas mencionadas.

E2		• : ×	√ fx	=B2+C2/60+I	D2/3600
	А	В	С	D	E
1		Grados	Minutos	Segundos	Grados y fracción
2	α =	32	45	27	32,7575
3	β=	45	36	41	45,6114

llustración 3

Ejemplo: Se quiere utilizar como argumento de una función trigonométrica en Excel el ángulo $\beta = 45^{\circ} 36' 41''$

Para ello procedemos a introducir (como se muestra en la llustración 4) el valor numérico correspondiente a los grados en la celda B3, el valor de los minutos en la celda C3 y el valor de los segundos en la celda D3. Luego, como ya se ha explicado en la unidad anterior, se introduce una fórmula en la celda E3 para expresar el valor del ángulo en grados sexagesimales y su fracción decimal. Esta fórmula es la misma que se muestra en la llustración 3 para la celda E2 correspondiente al ángulo α , pero con referencia a las celdas del ángulo β , es decir: B3, C3, D3 (arrastrar fórmula).

Ahora que ya está expresado el ángulo en una sola celda se debe convertir en **RADIANES** para introducirlo como argumento de una función trigonométrica de Excel.

Para ello podemos utilizar la relación matemática que existe entre los grados sexagesimales y los radianes e introducirla en una fórmula en la celda **F3**. En la barra de fórmulas de la Ilustración 4 se muestra esta fórmula para realizar la conversión. Consiste simplemente en multiplicar el ángulo en grados y fracción de la celda **E3** por $[\pi / 180]$ (Recordar que en Excel para introducir el número $\pi = 3,141592654$... debemos escribir **PI**()).

La otra alternativa es utilizar la función específica que posee Excel para convertir grados a radianes, esta es: **RADIANES(ángulo).**

_							
F3		• : ×	$\checkmark f_x =$	E3*PI()/180)		
	А	В	С	D	E	F	
1		Grados	Minutos	Segundos	Grados y fracción	RADIANES	
2	α =	32	45	27	32,7575	0,57173	
3	β=	45	36	41	45,6114	0,79607	

Ilustración 4

Es decir, en la celda **F3** llamar al asistente de funciones como se describió en la página 1 y buscar en la categoría de funciones Mateméticas y trigonométricas la función llamada **RADIANES.** Como para todas las funciones, el asistente de funciones muestra, abajo del nombre de la función, la sintaxis de la misma (**negrita**) y una breve descripción de lo que realiza la función (ver llustración 5). El argumento de esta función **RADIANES(ángulo)** debe ser el ángulo expresado en grados y fracción de la celda **E3.**

3.2 Minutos y segundos como decimal

Esta es la forma más compacta para expresar ángulos no enteros. Consiste en expresar la fracción de minutos y segundos como fracción decimal de los Grados.

Simplemente se basa en las siguientes equivalencias: 60 minutos = 1 grado

 $60 \ segundos = 1 \ minuto$

 $\frac{60min}{grado} \times \frac{60seg}{min} \to 3600 \ seg = 1 grado$

En la celda E2 de la planilla que figura en la Ilustración 3 se muestra la aplicación de estas equivalencias. Observar cómo en la barra de fórmulas se introducen estas relaciones.

sertar función			?	\times
scar una función:				
Escriba una breve descripción o haga clic en Ir	de lo que desea hacer y	a continuación,	l <u>ı</u>	:
) seleccionar una <u>c</u> ategoría: M	atemáticas y trigonomé	étricas 🗸 🗸		
eccionar una <u>f</u> unción:				
MULTIPLO.SUPERIOR.MAT NUMERO.ARABE NUMERO.ROMANO PI POTENCIA				^
PRODUCTO RADIANES				v
RADIANES(ángulo) Convierte grados en radianes.				
uda sobre esta función		Aceptar	Cano	elar

Ilustración 5

3.3 Grados, minutos y segundos separados con el operador dos puntos (gg:mm:ss)

En los subapartados anteriores se mostraron las dos primeras formas de expresar ángulos en grados sexagesimales y su correspondiente conversión a radianes.

La tercera forma de expresar ángulos es la que se muestra en las filas 6 a 8 de la

D7	,	• = ×	<i>√ f</i> x =	RADIANES(C
	А	В	С	D
1		Grados	Minutos	Segundos
2	α =	32	45	27
3	β =	45	36	41
4				
5				
6		gg:mm:ss	gg⁰mm'ss"	RADIANES
7	α =	32:45:27	32º45'27"	0,57173
8	β=	45:36:41	45º36'41"	0,79607
9				

Ilustración 6. Se escriben los grados y a continuación el operador "dos puntos" (:), luego los minutos separado de los segundos también por el operador "dos puntos" (:), todo en la misma celda B7 para el ángulo α ; y en la celda B8 para el ángulo β .

Se debe observar que en la barra de fórmulas de la planilla mostrada en la Ilustración 6 para la correspondiente conversión a RADIANES utilizando la Función provista por Excel (**RADIANES(ángulo**)) se ha multiplicado por un factor de 24 a la expresión del

D7	,	• = ×	<i>√ f</i> x =	RADIANES((27*24)	
	А	В	С	D	E	F
1		Grados	Minutos	Segundos	Grados y fracción	RADIANES
2	α =	32	45	27	32,7575	0,57173
3	β =	45	36	41	45,6114	0,79607
4						
5						
6		gg:mm:ss	gg⁰mm'ss"	RADIANES		
7	α =	32:45:27	32º45'27"	0,57173		
8	β=	45:36:41	45º36'41"	0,79607		
9						

llustración 6

ángulo descrita en este apartado (gg^omm'ss'')), esto es porque este formato proviene de un formato de <u>fecha</u> preestablecido por el programa en donde las primeras 2 cifras corresponden a las horas de un día.

4. Cómo graficar funciones trigonométricas

Para graficar funciones trigonométricas en EXCEL se deben aplicar secuencialmente los pasos indicados en los párrafos anteriores para la conversión de ángulos expresados en grados sexagesimales a RADIANES y luego utilizar estos valores numéricos expresados en RADIANES como argumento de la función trigonométrica que se desea graficar. De esta manera se obtienen los valores numéricos de las funciones trigonométricas. En el ejemplo de la Ilustración 7 son los valores que figuran en las columnas D, E y F para la SENO, función COSENO v TANGENTE, respectivamente.

Ejemplo: Graficar las tres funciones trigonométricas básicas (seno, coseno, tangente) en un rango de 3 ciclos (recordar que un ciclo es una vuelta completa de la circunferencia trigonométrica: 360°).

Para lograrlo se describirá a continuación la secuencia de pasos que se debe realizar. Los resultados se muestran en la llustración 7.

TABULAR LOS VALORES DE ÁNGULOS EN GRADOS(columna B) ↓ CONVERTIR VALORES EN GRADOS A RADIANES (columna C) ↓ UTILIZAR LOS VALORES EN RADIANES

Archivo	Inicio Inse	rtar Dibujar	Disposicio	ón de página	Fórmulas
D14	• : ×	<i>√ fx</i> =	SENO(C14)		
A	В	С	D	E	F
11	ANGULOS [°]	ANGULOS [RAD]	SENO(ang.)	COS(ang.)	TAN(ang.)
12	0	0,00000	0,00000	1,00000	0,00000
13	5	0,08727	0,08716	0,99619	0,08749
14	10	0,17453	0,17365	0,98481	0,17633
15	15	0,26180	0,25882	0,96593	0,26795
16	20	0,34907	0,34202	0,93969	0,36397
17	25	0,43633	0,42262	0,90631	0,46631
18	30	0,52360	0,50000	0,86603	0,57735
19	35	0,61087	0,57358	0,81915	0,70021
20	40	0,69813	0,64279	0,76604	0,83910
21	45	0,78540	0,70711	0,70711	1,00000
22	50	0,87266	0,76604	0,64279	1,19175
23	55	0,95993	0,81915	0,57358	1,42815
24	60	1,04720	0,86603	0,50000	1,73205
25	65	1,13446	0,90631	0,42262	2,14451
26	70	1,22173	0,93969	0,34202	2,74748
27	75	1,30900	0,96593	0,25882	3,73205
28	80	1,39626	0,98481	0,17365	5,67128
29	85	1,48353	0,99619	0,08716	11,43005
30	90	1,57080	1,00000	0,00000	
31	95	1,65806	0,99619	-0,08716	-11,43005
32	100	1,74533	0,98481	-0,17365	-5,67128
33	105	1,83260	0,96593	-0,25882	-3,73205
34	110	1,91986	0,93969	-0,34202	-2,74748
35	115	2,00713	0,90631	-0,42262	-2,14451
36	120	2,09440	0,86603	-0,50000	-1,73205
37	125	2,18166	0,81915	-0,57358	-1,42815
38	130	2,26893	0,76604	-0,64279	-1,19175
39	135	2,35619	0,70711	-0,70711	-1,00000
40	140	2,44346	0,64279	-0,76604	-0,83910
41	145	2,53073	0,57358	-0,81915	-0,70021
42	150	2,61799	0,50000	-0,86603	-0,57735
43	155	2,70526	0,42262	-0,90631	-0,46631

Ilustración 7

Por razones de disponibilidad de espacio no se muestran todos los datos generados para graficar los 3 ciclos, sino sólo hasta los 155°.

Como puede observarse en la llustración 7 en la columna B se han expresado los valores de los ángulos en Grados sexagesimales, a intervalos de 5° para lograr una buena resolución de la gráfica.

En la columna siguiente, la C, utilizando alguna de las opciones explicadas se convierten cada uno de estos ángulos a **RADIANES** para recién poder utilizarlos como argumento de las funciones trigonométricas.

En la columna D, E y F se calculan los valores de las funciones trigonométricas Seno, Coseno y Tangente de éstos ángulos expresados en radianes de la columna C, respectivamente.

Es muy importante notar que la función trigonométrica **Tangente** es discontínua en la serie: 90°; 270°; 450°; 630°....

Por lo tanto, para poder realizar el gráfico es necesario suprimir de la tabla generada los valores correspondientes (Ilustración 7).

Luego, como se explicó en unidades anteriores se debe seleccionar correctamente los datos de la tabla para poder realizar el gráfico que se observa en la Ilustración 8.

En este caso particular, se va a graficar los valores

tabulados en la columna B de la llustración 7 como valores del eje de las abscisas (eje horizontal – eje x) y cada uno de los valores generados para las funciones trigonométricas SENO, COSENO y TANGENTE tabulados en las columnas D, E y F respectivamente como valores del eje de las ordenadas (eje vertical – eje y).

Para trazar el gráfico en este caso de pares ordenados en un sistema de referencia de ejes cartesianos como el que se muestra en la llustración 8 es necesario Insertar el tipo de gráfico denominado Dispersión.

Recordando los procedimientos vistos en la unidad anterior para insertar este tipo de gráfico debíamos seleccionarlo desde la pestaña INSERTAR, en el grupo Gráficos seleccionar la opción Dispersión, como se muestra en la Ilustración 9.

Observar detenidamente en esta misma ilustración que para graficar la función SENO deben seleccionarse columnas alternadas, es decir, la columna de valores del eje horizontal: ángulos en grados que están en la columna B y los resultados de la función SENO de estos ángulos que están en la columna D. Como se explicó en la unidad anterior esto debía hacerse seleccionando en primer lugar la primer columna (columna B), luego manteniendo presionada la tecla [Ctrl] seleccionar la segunda columna de valores para el gráfico (en este caso de la función SENO es la columna D).

El procedimiento se repite para insertar los gráficos correspondientes a las columnas de la función COSENO y TANGENTE.

rec	las dinámicas comendadas	Tabla Formulari	ios Ilustracion	nes Casilla	Gráficos recomendados	→ Ш × × × ~ 5 ④ ~	∎ ~ ≜ ~ [∷ ~	ጫ ~ ፝ቘ ~	G Mapas	Gráfico dinámico ~	Líneas (Column	as Pérdidas y ganancias	Segmer de d
	Tablas			Controles		-	Dien	erción				Minigrá	ficos	
	ANGULOS	RADIANES	SENO	COS	TANG		Disp	cr sion						
	0	0	0	1	0		°. (s ٩	2	M				
	5	0,08726646	0,08715574	0,9961947	0,08748866		•		\sim	\sim				
	10	0,17453293	0,17364818	0,98480775	0,17632698									
	15	0,26179939	0,25881905	0,96592583	0,26794919				A.					
	20	0,34906585	0,34202014	0,93969262	0,36397023		6.9	4	<u>v N</u>					
	25	0,43633231	0,42261826	0,90630779	0,46630766									
	30	0,52359878	0,5	0,8660254	0,57/35027		Burb	uja						
	35	0,61086524	0,57357644	0,81915204	0,70020754				-					
	40	0,6981317	0,64278761	0,76604444	0,83909963									
	45	0,78539816	0,70710678	0,70710678	1 10175250				-0					
	50	0,87266463	0,76604444	0,64278761	1,19175359		14.							
	55	1.04710755	0,81915204	0,57557644	1,42014001		••	<u>M</u> ás gra	áficos de	e dispersión				
	65	1,04/19/55	0,8660254	0,5	2 14450602									
	70	1,13440401	0,90630779	0,42201820	2,14450092									
	70	1,22173048	0,93969262	0,34202014	2,74747742									
	/5	1,30899694	0,90592585	0,23881903	5,73205081									
	80	1,3902034	0,98480775	0,17304818	3,07128182									
	00	1,46532960	1	6 1257E-17	1 6225E+16									
	90	1,57079033	0.9961947	-0.08715574	-11 4300523									
	100	1,03800273	0,9901947	-0,08713374	-11,4300323									
	105	1,74352525	0.96592583	-0 25881905	-3 73205081									
	110	1 91986218	0.93969262	-0 34202014	-2 74747742									
	115	2 00712864	0,90630779	-0.42261826	-2 14450692									
	120	2.0943951	0.8660254	-0.5	-1.73205081									
	125	2.18166156	0.81915204	-0.57357644	-1.42814801									
	130	2,26892803	0,76604444	-0,64278761	-1,19175359									
	135	2,35619449	0,70710678	-0,70710678	-1									
	140	2,44346095	0,64278761	-0,76604444	-0,83909963									
	145	2,53072742	0,57357644	-0,81915204	-0,70020754									
	150	2,61799388	0,5	-0,8660254	-0,57735027									
	155	2,70526034	0,42261826	-0,90630779	-0,46630766									
,	eie6 oir	5 Hoia?	Hoia1	+										
₿¥.	Accesibilidad: es	necesario investig	ar		IIt	ıstra	ción :	9						

5. Ejercicios propuestos

Realizar los siguientes ejercicios propuestos en un libro de Excel donde cada ejercicio sea resuelto en una hoja distinta. Calcular la **altura del árbol** de la figura mostrada. Se sabe que si nos paramos a 76 metros de la base del árbol la línea de vista de la parte superior del árbol estará a 32° con respecto a la horizontal. Utilizar la relación que define la tangente de un ángulo (tg θ) y las funciones trigonométricas correspondientes de Excel pare resolver el Ejercicio.

Ejercicio Nº 2

Para el mismo árbol del ejercicio anterior, cuál sería el ángulo θ de inclinación de la línea de vista a la parte superior del árbol con respecto a la horizontal, si nos paramos a 200 metros desde la base del mismo. Investigue utilizando el Asistente de Funciones la función **ATAN(número)** para responder la pregunta.

E	Fio	raiaiaa	nronuoctoc
Э.	Elf	1 111103	propuestos

Realizar los siguientes ejercicios propuestos en un libro de Excel donde cada ejercicio sea resuelto en una hoja distinta.

Ejercicio Nº 3
Generar la tabla y graficar la función:
$f(\alpha) = 2 \times seno \ (\alpha)$
En el intervalo $-720^{\circ} \leq \alpha \leq 720^{\circ}$
Ejercicio Nº 4
Generar la tabla y graficar la función:
$f(\beta) = 3 \times \cos(\beta) + 7$
En el intervalo $0^{\circ} \leq \beta \leq 1440^{\circ}$

Ejercicio Nº5

NTO O

Estudiar la respuesta dinámica de una estructura es un problema fundamental de la Ingeniería Sismorresistente. Para realizarlo se establecen modelos mecánicos más o menos complejos.

La respuesta dinámica en vibraciones libres de un modelo estructural de un grado de libertad (1 GDL) con amortiguamiento viscoso equivalente, está dada por la siguiente ecuación:

 $x(t) = e^{-\omega_0.\eta.t} \times [A \times \cos(\omega_0.t) + B \times seno(\omega_0.t)]$

En donde:

x(t): Es la historia de los desplazamientos del sistema (posición "x" en cada instante de tiempo "t")

 ω_0 : Es una frecuencia angular del sistema.

Observar que el producto " ω_0 . t" utilizado en la ecuación como argumentos de las funciones trigonométricas tiene como unidad el "radián". Por lo tanto, la cantidad que debe dividirse en intervalos no son ángulos, sino que es el tiempo, que también es la cantidad que debe graficarse en abscisas (eje x). Recordar que la función exponencial $e^{-\omega_0 \cdot \eta \cdot t}$ en Excel debe ingresarse en la barra de fórmulas como **EXP(exponente)**.

Generar la tabla y graficar el movimiento para 15 segundos con los parámetros $\omega_0=4; \eta=0.05;$ A=2; B=1

	Ejercicio №6 Grafique de manera individual y luego la suma de las tres funciones que se dan a continuación. Utilice una escala en los ejes idéntica para las cuatro gráficas.
5. Ejercicios propuestos	 Con el análisis de Fourier se demostró que una función periódica arbitraria se representa por medio de una serie infinita de sinusoides con frecuencias relacionadas de manera armónica. Esta forma trigonométrica de las Series de Fourier más el uso de ciertas técnicas numéricas tiene una potente utilidad en el análisis de la señal de respuesta de estructuras, cuyo estudio es de interés para la Ingeniería Civil, cuando son sometidas a acciones sísmicas donde la señal de entrada es de tipo general y arbitraria.
Realizar los siguientes ejercicios propuestos en un libro de Excel donde cada ejercicio sea resuelto en una hoja distinta.	$f1(t) = \frac{4}{\pi} \times \cos(\omega_0 \times t)$ $f2(t) = -\frac{4}{3\pi} \times \cos(3\omega_0 \times t)$ $f3(t) = \frac{4}{5\pi} \times \cos(5\omega_0 \times t)$
	$f(t) = \frac{4}{\pi} \times \cos(\omega_0 \times t) - \frac{4}{3\pi} \times \cos(3\omega_0 \times t) + \frac{4}{5\pi} \times \cos(5\omega_0 \times t)$ $\omega_0 = 4,2$
	$t = tiempo \ expresado \ en \ segundos (variable)$ En el intervalo $-3s \le t \ \le \ 3s$
	Observe luego de graficar que la gráfica obtenida se acerca a una onda rectangular de amplitud aproximadamente igual a 1,0 y periodo $T \cong 1,5$ segundos ($T = \frac{2\pi}{\omega_0}$)